Tracking of mesenchymal stem cells labeled with gadolinium diethylenetriamine pentaacetic acid by 7T magnetic resonance imaging in a model of cerebral ischemia
نویسندگان
چکیده
Progress in the development of stem cell and gene therapy requires repeatable and non‑invasive techniques to monitor the survival and integration of stem cells in vivo with a high temporal and spatial resolution. The purpose of the present study was to examine the feasibility of using the standard contrast agent gadolinium diethylenetriamine pentaacetic acid (Gd‑DTPA) to label rat mesenchymal stem cells (MSCs) for stem cell tracking. MSCs, obtained from the bilateral femora of rats, were cultured and propagated. The non‑liposomal lipid transfection reagent effectene was then used to induce the intracellular uptake of Gd‑DTPA. Electron microscopy was used to detect the distribution of Gd‑DTPA particles in the MSCs. The labeling efficiency of the Gd‑DTPA particles in the MSCs was determined using spectrophotometry, and MTT and trypan blue exclusion assays were used to evaluate the viability and proliferation of the labeled MSCs. T1‑weighted magnetic resonance imaging (MRI) was used to observe the labeled cells in vitro and in the rat brain. Gd‑DTPA particles were detected inside the MSCs using transmission electron microscopy and a high labeling efficiency was observed. No difference was observed in cell viability or proliferation between the labeled and unlabeled MSCs (P>0.05). In the in vitro T1‑weighted MRI and in the rat brain, a high signal intensity was observed in the labeled MSCs. The T1‑weighted imaging of the labeled cells revealed a significantly higher signal intensity compared with that of the unlabeled cells (P<0.05) and the T1 values were significantly lower. The function of the labeled MSCs demonstrated no change following Gd‑DTPA labeling, with no evident adverse effect on cell viability or proliferation. Therefore, a change in MR signal intensity was detected in vitro and in vivo, suggesting Gd‑DTPA can be used to label MSCs for MRI tracking.
منابع مشابه
Contrast uptake in primary hepatic angiosarcoma on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in the hepatobiliary phase
Primary hepatic angiosarcoma is the most common malignant mesenchymal tumor of the liver. It has a poor prognosis and various appearances on magnetic resonance (MR) images. We report a case of hepatic angiosarcoma with a characteristic appearance on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MR imaging in the hepatobiliary phase. A 72-year-old man was adm...
متن کاملComparison of the Timing of Hepatic Arterial Phase and Image Quality Using Test-Bolus and Bolus-Tracking Techniques in Gadolinium–Ethoxybenzyl–Diethylenetriamine Pentaacetic Acid–Enhanced Hepatic Dynamic Magnetic Resonance Imaging
OBJECTIVES The aim of this study was to compare the image quality, the degree of artifacts and the percentage of timing of the optimal hepatic arterial phase (HAP) between test-bolus and bolus-tracking methods on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). METHODS In this prospective study, 60 patients who underwent 3-di...
متن کاملPrimary hepatic angiomyolipoma: immunohistochemistry and electron microscopic observations: a case report
BACKGROUND Hepatic angiomyolipomas are a rare, benign group of mesenchymal tumors in the liver. Hepatic angiomyolipoma is sometimes misdiagnosed as hepatocellular carcinoma, and there is the possibility of a malignant transformation. Hence, the accurate diagnosis of this disorder is necessary. CASE PRESENTATION A 64-year-old Japanese man was observed to have a space-occupying lesion of 15-mm ...
متن کاملGadolinium3+-doped mesoporous silica nanoparticles as a potential magnetic resonance tracer for monitoring the migration of stem cells in vivo
We investigated the tracking potential of a magnetic resonance imaging (MRI) probe made of gadolinium-doped mesoporous silica MCM-41 (Gd(2)O(3)@MCM-41) nanoparticles for transplanted bone mesenchymal stem cells (MSCs) and neural stem cells (NSCs) in vivo. The nanoparticles, synthesized using a one-step synthetic method, possess hexagonal mesoporous structures with appropriate assembly of nanosc...
متن کاملOptimization of fast acquisition methods for whole-brain relative cerebral blood volume (rCBV) mapping with susceptibility contrast agents.
Fast gradient-echo magnetic resonance scan techniques with spiral and rectilinear (echoplanar) k-space trajectories were optimized to perform bolus-tracking studies of human brain. Cerebral hemodynamics were studied with full brain coverage, a spatial resolution of 4 mm, and a temporal resolution of 2 seconds. The sensitivity of the techniques to detect image signal-intensity changes during the...
متن کامل